Chapter Overview

• Test Drivers & Challenges
• Test & Yield Learning
• Test Cost
• Adaptive Test
• 3D device Test – New for 2012
• Test Technology Requirements
 – Test parallelism
 – SoC
 – Device types: Logic, Memory, RF/AMS, Specialty Devices
 – Device handling (Handlers, Probers)
 – Device Contacting (probing and package contacting)
2011 Test Contributors

<table>
<thead>
<tr>
<th>Andrew Aagaard</th>
<th>Ted Eaton</th>
<th>Lenny Leon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debbora Ahlgren</td>
<td>Stefan Eichenberger</td>
<td>Rien Looijen</td>
</tr>
<tr>
<td>Rob Aitken</td>
<td>Bill Eklow</td>
<td>Michio Maekawa</td>
</tr>
<tr>
<td>Ken-ichi Anzou</td>
<td>Francois-Fabien Ferhani</td>
<td>Amit Majumdar</td>
</tr>
<tr>
<td>Dave Armstrong</td>
<td>Shawn Fetterolf</td>
<td>Nilajan Mukherjee</td>
</tr>
<tr>
<td>Roberta Bailey Roberts</td>
<td>Anne Gattiker</td>
<td>Prasad Mantri</td>
</tr>
<tr>
<td>Roger Barth</td>
<td>Rama Gudavalli</td>
<td>Peter Maxwell</td>
</tr>
<tr>
<td>John Bearden</td>
<td>Kazumi Hatayama</td>
<td>Anne Meixner</td>
</tr>
<tr>
<td>Brady Benware</td>
<td>Hirokazu Hirayama</td>
<td>Peter Muhmentahler</td>
</tr>
<tr>
<td>Sounil Biswas</td>
<td>Jeong Ho Cho</td>
<td>Taku Murakami</td>
</tr>
<tr>
<td>Shawn Blanton</td>
<td>Hisao Horibe</td>
<td>Takeshi Nagasaka</td>
</tr>
<tr>
<td>Ken Butler</td>
<td>Hiroki Ikeda</td>
<td>Masaaki Namba</td>
</tr>
<tr>
<td>Yi Cai</td>
<td>Shoji Iwasaki</td>
<td>Phil Nigh</td>
</tr>
<tr>
<td>Wendy Chen</td>
<td>Hongshin Jun</td>
<td>Akitoshi Nishimura</td>
</tr>
<tr>
<td>Calvin Cheung</td>
<td>Rohit Kapur</td>
<td>Hermann Obermeir</td>
</tr>
<tr>
<td>Khushru Chhor</td>
<td>Masahiro Kanase</td>
<td>Peter O'Neill</td>
</tr>
<tr>
<td>Steve Comen</td>
<td>Brion Keller</td>
<td>Jeyoung Park</td>
</tr>
<tr>
<td>Dennis Conti</td>
<td>Takuya Kobayashi</td>
<td>Mike Peng Li</td>
</tr>
<tr>
<td>Zoe Conroy</td>
<td>Gibum Koo</td>
<td>Frank Poehl</td>
</tr>
<tr>
<td>Peter Crabbe</td>
<td>Greg Labonte</td>
<td>Chris Portelli-Hale</td>
</tr>
<tr>
<td>Robert Daasch</td>
<td>Ken Lanier</td>
<td>Bill Price</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joe Reynick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brad Robbins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paul Roddy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mike Rodgers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yasuo Sato</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taylor Scanlon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rene Segers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steven Slupsky</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satoru Takeda</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ken Taoka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steve Tilden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hirofumi Tsuboshita</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kees Visser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jody Van Horn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erik Volkerink</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adam Wright</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yervant Zorian</td>
<td></td>
</tr>
</tbody>
</table>
2011 Changes

• Updated Drivers, Difficult Challenges, and opportunities

• New Section on 3D Device Test Challenges

• Major Update to Adaptive Testing section

• Logic / DFT major rewrite
 – Added Fault Expectations using multiple fault models
 – Added test data volume given five compression assumptions

• Test Cost
 – Test cost survey update that quantifies current industry view

• Updates to Logic, SoC, RF, Analog, & Specialty devices
Drivers

• Device trends
 – Increasing device interface bandwidth (# of signals and data rates)
 – Increasing device integration (SoC, SiP, MCP, 3D packaging)
 – Integration of emerging and non-digital CMOS technologies
 – Complex package electrical and mechanical characteristics
 – Device characteristics beyond one sided stimulus/response model
 – 3 Dimensional silicon - multi-die and Multi-layer
 – Multiple I/O types and power supplies on same device
 – Fault Tolerant Architectures and Protocols
Drivers

- Increasing test process complexity
 - Device customization during the test process
 - Feedback data for tuning manufacturing
 - Dynamic test flows via “Adaptive Test”
 - Higher order dimensionality of test conditions
 - Concurrent Test
 - Maintaining Unit level Traceability
Drivers

• Economic Scaling of Test
 – Physical and economic limits of test parallelism
 – Managing (logic) test data and feedback data volume
 – Managing interface hardware and (test) socket costs
 – Balancing General Purpose Equipment vs. Multiple Insertions for System Test and BIST
Difficult Challenges

- **Cost of Test and Overall Equipment Efficiency**
 - CoT continues to be the primary driver for innovation
 - Traditional drivers for CoT are starting to be limited by OEE

- **Test Development gating volume production**
 - Increasing device complexity driving more complex test development

- **Detecting Systemic Defects**
 - Testing for local non-uniformities, not just hard defects
 - Detecting symptoms and effects of line width variations, finite dopant distributions, systemic process defects
Difficult Challenges

• Screening for reliability
 – Implementation challenges and effectiveness of screens
 • burn-in, IDDQ, and Vstress
 – Erratic, non deterministic, and intermittent device behavior
 – Mechanical damage during the testing process
 – Multi-die stacks/TSV
 – Power Management Issues
Future Opportunities

• Test Program Automation
 – Automatic generation of an entire test program
 – Tester independent test programming language
 – Resolve Mixed Signal test programming challenges

• Scan Diagnosis in the Presence of Compression

• Simulation and Modeling
 – Seamless integration of simulation & modeling into the testing process
 – Move to a higher level of abstraction with Protocol Aware test resources
 – Focused test generation based on layout, modeling, and adaptive feedback

• Convergence of Test and System Reliability Solution
 – Re-use of test collateral in different environments (ATE, Burn-in, System, Field)
Traditional Test Cost Components

- **NRE**
 - DFT design and validation
 - Test Development

- **Device**
 - Die Area Increase
 - Yield Loss

- **Work Cell**
 - Building
 - People
 - Consumables
 - DUT interface
 - Test Equipment
 - Handling Tools
 - Factory Automation

- **Untested Units** → **Good Units**
 - Production Test Cost
 - Reject Units

- **False Fail Units**
3D Test Cost Components

NRE
- DFT design and validation
- Test development

Device
- Die area increase
- Yield loss

False Pass Units

Smart Manufacturing

Probably Good Units

Untested Units

Test Cell

Reject Units

Analysis

Die Stacking

Test Cell

Pass/Fail

Good Units

Rejected Units

False Fail Units

Bad Die in a Good Stack
2011 Test Cost Survey Update

Test Cost Metrics
- Cost per unit
- % of total Product Cost
- Cost per second
- Cost per megabit

Current Test Cost Drivers
- ATE capital
- Interface hardware
 - **ATE utilization - NEW**
- Test program development
- Test Time and Coverage

Future Cost Drivers
- New Defects and Reliability problems
- Test Requirements of packaging
 - **Interfacing - NEW**
- Data (yield learning, traceability, test data) - **NEW**

Current cost control Methods
- Test Parallelism
- Structural Test & Scan
- Compression/DFT/BIST/BIST
- **Adaptive Test**
- Concurrent Test
- **Wafer-level at-speed testing**

Future cost control Methods
- Wafer-level At Speed testing
- Advanced embedded instruments
- Adaptive Test
- New contacting technologies
 - **In system testing - NEW**
- Built-in Fault Tolerance
Adaptive Test

• Modified testing based on analysis of real-time results

• Benefits
 – Higher Quality
 – Fast Test Time Reduction
 – Lower cost
 – Fast yield learning

• Requires data infrastructure
 – Database
 – Analysis tools
 – Confidence

• Implementation is evolving
3D Device Testing Challenges

• Die level test access to all die in the stack
 – Communication thru the top die in the stack
• Test Flow / Cost / Resources
 – Test partitioning, non-traditional test structure
• Die to Die Interactions
 – Signal routing thru another die
• Debug / Diagnosis
• DFT
• Test data management, distribution, & security
• Power management and implications
2012-2013 Plans

• 3D / “Cube” device test
 – Test step insertion / flow for TSV
 – Manage power & heat
 – Singulated die handling
 – Reliability wafer test requirements

• DFT / BISx via new methods – New Focus Team
 – 3D devices
 – Eliminate digital test data and test programs
 – RF / AMS parametric testing

• 3rd party review of test chapter by users and universities

• Cost & adaptive test section updates

• Logic table refinement

• Concurrent test table addition?
Summary

• 3D stacked devices will change test paradigms
 – The methods and approach seem available
 – Considerable work ahead to implement

• Adaptive testing is becoming a standard approach
 – Significant test data accumulation, distribution, and analysis challenges

• Managing cost is overall challenge
 – Industry is pulling in cost reduction methodology
Thank You!